The Impact of Task Runtime Estimate Accuracy on Scheduling Workloads of Workflows
نویسندگان
چکیده
Workflow schedulers often rely on task runtime estimates when making scheduling decisions, and they usually target the scheduling of a single workflow or batches of workflows. In contrast, in this paper, we evaluate the impact of the absence or limited accuracy of task runtime estimates on slowdown when scheduling complete workloads of workflows that arrive over time. We study a total of seven scheduling policies: four of these are popular existing policies for (batches of) workloads from the literature, including a simple backfilling policy which is not aware of task runtime estimates, two are novel workloadoriented policies, including one which targets fairness, and one is the well-known HEFT policy for a single workflow adapted to the online workload scenario. We simulate homogeneous and heterogeneous distributed systems to evaluate the performance of these policies under varying accuracy of task runtime estimates. Our results show that for high utilizations, the order in which workflows are processed is more important than the knowledge of correct task runtime estimates. Under low utilizations, all policies considered show good results, even a policy which does not use task runtime estimates. We also show that our Fair Workflow Prioritization (FWP) policy effectively decreases the variance of workflow slowdown and thus achieves fairness, and that the planbased scheduling policy derived from HEFT does not show much performance improvement while bringing extra complexity to the scheduling process.
منابع مشابه
Improving the palbimm scheduling algorithm for fault tolerance in cloud computing
Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...
متن کاملMulti-objective and Scalable Heuristic Algorithm for Workflow Task Scheduling in Utility Grids
To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one an...
متن کاملTASA: A New Task Scheduling Algorithm in Cloud Computing
Cloud computing refers to services that run in a distributed network and are accessible through common internet protocols. It merges a lot of physical resources and offers them to users as services according to service level agreement. Therefore, resource management alongside with task scheduling has direct influence on cloud networks’ performance and efficiency. Presenting a proper scheduling ...
متن کاملOptimization Task Scheduling Algorithm in Cloud Computing
Since software systems play an important role in applications more than ever, the security has become one of the most important indicators of softwares.Cloud computing refers to services that run in a distributed network and are accessible through common internet protocols. Presenting a proper scheduling method can lead to efficiency of resources by decreasing response time and costs. This rese...
متن کاملDynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture
Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...
متن کامل